Universal Turing Machines Lecture 30 Section 10.4

Robb T. Koether

Hampden-Sydney College

Mon, Nov 7, 2016

Robb T. Koether (Hampden-Sydney College)

Universal Turing Machines

э

< ロト < 同ト < ヨト < ヨト

Robb T. Koether (Hampden-Sydney College)

Universal Turing Machines

Mon, Nov 7, 2016 2 / 13

э

∃ ► 4 Ξ

I > <
I >
I

Universal Turing Machines

2 Enumerators

э

DQC

イロト イポト イヨト イヨト

Definition (Universal Turing Machines)

A universal Turing machine is a Turing machine that can simulate any Turing machine.

- The input tape contains two items:
 - An encoding of the Turing machine *M* to be simulated.
 - The input *w* to be read by *M*.
- The universal Turing machine U will read M and w and
 - Accept, reject, or loop, according to what *M* would do when reading *w*,
 - Write to the tape the output that *M* would write when reading *w*.

< ロト < 同ト < ヨト < ヨト

• The encoding is straightforward:

- The states $\{q_1, q_2, \ldots, q_n\}$ are encoded as $1, 11, \ldots, 111 \cdots 1$ and separated by 0's.
 - q_1 is the start state.
 - *q*² is the sole final state.
- The tape symbols $\{a_1, a_2, \dots, a_m\}$ are encoded as
 - $1, 11, \ldots, 111 \cdots 1$ and separated by 0's.
- "Left" is encoded as 1.
- "Right" is encoded as 11.
- For example, the transition δ(q₂, a₃) = (q₁, a₄, R) would be encoded as

1101110101111011

イロト イポト イヨト イヨト

- The universal Turning machine *U* has three tapes.
 - Tape 1 contains the encoding of a machine *M*.
 - Tape 2 contains the encoded input to *M*.
 - Tape 3 contains the current state.

- *U* reads the current state *q_i* from Tape 3 and the current symbol *a_i* from Tape 2.
- It searches Tape 1 for a transition $(q_i, a_j) = (q_k, a_m, d)$.
- When it finds it, it
 - Replaces q_i with q_k on Tape 3.
 - Replaces a_j with a_m on Tape 2.
 - Moves left or right on Tape 2, according to d.
- If and when it fails to find (q_i, a_j) on Tape 1, it quits.

< ロト < 同ト < ヨト < ヨト

Universal Turing Machines

æ

DQC

<ロト < 回ト < 回ト < 回ト

Definition (Enumerate)

To enumerate a language L is to list all of the strings in L, each string listed exactly once. The order does not matter.

Definition (Enumerator)

An enumerator for a language *L* is a Turing machine that enumerates *L* on its tape.

• If *L* is infinite, then clearly the enumerator does not halt.

4 ∃ > < ∃ >

Example (Enumerator)

- Let $\Sigma = \{0, 1\}$.
- It is easy to build an enumerator for Σ*.
 - Begin with \$ on the tape.
 - Write λ "on the tape."
 - Move right, write a separator \$, and write 0.
 - Copy the last number written and increment the copy, unless the copy is all 1's, in which case replace it with all 0's and one additional 0.
 - Write the separator \$.
 - Repeat the previous three steps.
- The tape contents will be

\$\$0\$1\$00\$01\$10\$11\$000...

Robb T. Koether (Hampden-Sydney College)

A B F A B F

- Let $\Sigma = \{0, 1\}.$
- Describe enumerators for the following languages.
 - All strings with an equal number of 0's and 1's.
 - All legitimate patterns of parentheses, where 0 represents '(' and 1 represents ')'.
 - All prime numbers.
 - All numbers that divide one of the decimal integers 9, 99, 999, 9999, 99999, ...
 - All pairs $\{a, b\}$, where $a, b \ge 0$.
 - All triples $\{a, b, c\}$, where $a, b, c \ge 0$.

A B F A B F

Universal Turing Machines

2 Enumerators

æ

DQC

イロト イヨト イヨト イヨト

Homework

• Section 10.3 Exercises 1, 2, 4, 5, 6, 8, 9, 10.

Robb T. Koether (Hampden-Sydney College)

Universal Turing Machines

Mon. Nov 7. 2016 13 / 13

3

DQC

イロト イポト イヨト イヨト