Universal Turing Machines
 Lecture 30
 Section 10.4

Robb T. Koether
Hampden-Sydney College
Mon, Nov 7, 2016

(1) Universal Turing Machines

(2) Enumerators

(3) Assignment

Outline

(9) Universal Turing Machines
(2) Enumerators
(3) Assignment

Universal Turing Machines

Definition (Universal Turing Machines)

A universal Turing machine is a Turing machine that can simulate any Turing machine.

- The input tape contains two items:
- An encoding of the Turing machine M to be simulated.
- The input w to be read by M.
- The universal Turing machine U will read M and w and
- Accept, reject, or loop, according to what M would do when reading w,
- Write to the tape the output that M would write when reading w.

Universal Turing Machines

- The encoding is straightforward:
- The states $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ are encoded as $1,11, \ldots, 111 \cdots 1$ and separated by 0 's.
- q_{1} is the start state.
- q_{2} is the sole final state.
- The tape symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ are encoded as $1,11, \ldots, 111 \cdots 1$ and separated by 0 's.
- "Left" is encoded as 1.
- "Right" is encoded as 11.
- For example, the transition $\delta\left(q_{2}, a_{3}\right)=\left(q_{1}, a_{4}, R\right)$ would be encoded as

$$
1101110101111011
$$

Universal Turing Machines

- The universal Turning machine U has three tapes.
- Tape 1 contains the encoding of a machine M.
- Tape 2 contains the encoded input to M.
- Tape 3 contains the current state.

Universal Turing Machines

- U reads the current state q_{i} from Tape 3 and the current symbol a_{i} from Tape 2.
- It searches Tape 1 for a transition $\left(q_{i}, a_{j}\right)=\left(q_{k}, a_{m}, d\right)$.
- When it finds it, it
- Replaces q_{i} with q_{k} on Tape 3.
- Replaces a_{j} with a_{m} on Tape 2.
- Moves left or right on Tape 2, according to d.
- If and when it fails to find $\left(q_{i}, a_{j}\right)$ on Tape 1 , it quits.

Outline

(1) Universal Turing Machines

(3) Assignment

Enumeration

Definition (Enumerate)

To enumerate a language L is to list all of the strings in L, each string listed exactly once. The order does not matter.

Definition (Enumerator)

An enumerator for a language L is a Turing machine that enumerates L on its tape.

- If L is infinite, then clearly the enumerator does not halt.

Enumerators

Example (Enumerator)

- Let $\Sigma=\{0,1\}$.
- It is easy to build an enumerator for Σ^{*}.
- Begin with $\$$ on the tape.
- Write λ "on the tape."
- Move right, write a separator \$, and write 0.
- Copy the last number written and increment the copy, unless the copy is all 1's, in which case replace it with all 0's and one additional 0 .
- Write the separator \$.
- Repeat the previous three steps.
- The tape contents will be

$\$ \$ 0 \$ 1 \$ 00 \$ 01 \$ 10 \$ 11 \$ 000 \ldots$

Enumerators

- Let $\Sigma=\{0,1\}$.
- Describe enumerators for the following languages.
- All strings with an equal number of 0's and 1's.
- All legitimate patterns of parentheses, where 0 represents '(' and 1 represents ')'.
- All prime numbers.
- All numbers that divide one of the decimal integers 9, 99, 999, 9999, 99999, ...
- All pairs $\{a, b\}$, where $a, b \geq 0$.
- All triples $\{a, b, c\}$, where $a, b, c \geq 0$.

Outline

(1) Universal Turing Machines

(3) Assignment

Assignment

Homework

- Section 10.3 Exercises 1, 2, 4, 5, 6, 8, 9, 10.

